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The flow around two stationary cylinders in tandem arrangement at the laminar and
early turbulent regime, (Re = 102–103), is studied using two- and three-dimensional
direct numerical simulations. A range of spacings between the cylinders from 1.1 to 5.0
diameters is considered with emphasis on identifying the effects of three-dimensionality
and cylinder spacing as well as their coupling. To achieve this, we compare the two-
dimensional with corresponding three-dimensional results as well as the tandem
cylinder system results with those of a single cylinder. The critical spacing for vortex
formation and shedding in the gap region depends on the Reynolds number. This de-
pendence is associated with the formation length and base pressure suction variations
of a single cylinder with Reynolds number. This association is useful in explaining
some of the discrepancies between the two-dimensional and three-dimensional results.
A major effect of three-dimensionality is in the exact value of the critical spacing,
resulting in deviations from the two-dimensional predictions for the vorticity fields,
the forces on the downstream cylinder, and the shedding frequency of the tandem
system. Two-dimensional simulations under-predict the critical spacing, leading to
erroneous results for the forces and shedding frequencies over a range of spacings
where the flow is qualitatively different. To quantify the three-dimensional effects
we first employ enstrophy, decomposed into a primary and a secondary component.
The primary component involves the vorticity parallel to the cylinder axis, while the
secondary component incorporates the streamwise and transverse components of the
vorticity vector. Comparison with the single cylinder case reveals that the presence
of the downstream cylinder at spacings lower than the critical value has a stabilizing
effect on both the primary and secondary enstrophy. Systematic quantification of
three-dimensionalities involves finding measures for the intensity of the spanwise
fluctuations of the forces. This also verifies the stabilization scenario, suggesting that
when the second cylinder is placed at a distance smaller than the critical one, three-
dimensional effects are suppressed compared to the single-cylinder case. However,
when the spacing exceeds the critical value, the upstream cylinder tends to behave
like a single cylinder, but three-dimensionality in the flow generally increases.

1. Introduction
In many engineering applications, flow past cylinders in tandem or in an array

is present; for example, in heat exchanger tubes, tension-leg offshore platforms, and
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Figure 1. Tandem cylinders configuration. P , cylinder spacing; D, cylinder diameter;
U∞, free-stream velocity; LZ , length of periodic domain in the z-direction.

adjacent tall buildings. Many geometric configurations can result, depending on the
distance between the cylinders and their angle relative to the free stream. The present
work focuses on flow past a tandem arrangement of two rigid stationary cylinders,
i.e. when the axes of the two cylinders are on a plane parallel to the free-stream
velocity vector, as shown in figure 1. Side-by-side and staggered arrangements, and
flow-induced vibrations will not be discussed in this paper.

One of the earliest efforts to categorize the basic interference flow regimes was that
of Zdravkovich (1987). The interference of two cylinders in tandem belonged to a
regime that Zdravkovich identified as wake interference. According to his definition,
wake interference occurs when one cylinder is near to or submerged into the wake
of the other. The wake interference regime was subdivided into four major regimes.
In the first regime, the cylinders are in such close proximity that the shear layer
separating from the upstream cylinder rolls up after the downstream and forms a
single wake; this is the single slender-body regime. In the second regime, there is a
range of spacings for which the shear layers separating from the upstream cylinder
reattach on the downstream, defining the reattachment regime. Depending on the way
and location where they reattach, this regime can be categorized as alternating and
quasi-steady reattachment. In the third regime, an unstable subregion was identified
where vortex shedding behind the front cylinder persists for some time and then is
intermittently suppressed and replaced by the reattachment flow regime. Finally, in
the fourth regime, when the cylinders are sufficiently far apart, two separate vortex
streets are formed.

Oka, Kostic & Sikmanovic (1972) measured vortex-shedding frequencies for Rey-
nolds number Re= 5.1 × 103–8.8 × 103. They did not observe jump in the shedding
frequency (Strouhal number St), associated with vortex shedding in the gap region,
until the spacing exceeded 3.8 diameters (P/D � 3.8). Tanida, Okajima & Watanabe
(1973) found that the sudden increase in St occurred at P/D = 3.0 for Re= 3.4 × 103.
Igarashi (1981) studied flow characteristics around two tandem cylinders in the Re
range of 8.7 × 103–5.2 × 104. He found a critical spacing for frequency jump at
P/D =3.53. Okajima (1979) conducted measurements at relatively high Reynolds
numbers and found the critical spacing at P/D = 3.8 for Re =1.7 × 105 and
Re= 2.5 × 105. Sumner, Price & Paidoussis (1999) used particle image velocimetry
(PIV) to study the temporal and spatial development of the impulsively started flow
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around two stationary tandem cylinders at distances 1.0–3.0 diameters and Reynolds
numbers in the range 1200–3800. They were able to quantify the location and
characteristics of the recirculation zone and provide the time evolutions of primary
eddy circulation, area, centre location, and length from base of cylinder. Xu & Zhou
(2004) used hot wires in the wake of each cylinder to measure the Strouhal number
of two inline cylinders at Re = 800 to 4.2 × 104 and spacings P/D = 1 to 15. For
Re =1400 they calculated a critical spacing P/D = 4.5. At Re =8500, they found a
critical spacing P/D = 4.0 while for Re = 42 000 the critical spacing was P/D =3.0.
These results deviate from those previously reported by Tanida et al. (1973), Okajima
(1979), Igarashi (1981) and others, but agree with the results reported by Ljungkrona,
Norberg & Sunden (1991). They attributed the deviations from other authors to
different aspect ratio and free-stream turbulence.

Apart from the above experimental studies, the few available numerical ones are
two-dimensional. Although a single cylinder is a simple geometry, two of them create
geometrical complexity, which is difficult to handle efficiently by structured grid
methods. Slaouti & Stansby (1992) employed a random vortex method, enhanced
by a vortex in cell scheme on overlapping grids, to study the laminar flow around
two cylinders at Re = 200. The results of this study showed many of the features
observed experimentally. However, the calculation of forces was not very accurate,
and frequency analysis for spacings less than the critical for generation of shedding
in the gap region presented difficulties. Meneghini et al. (2001) used a finite-element
method on an unstructured mesh to solve the flow around two cylinders in tandem
and staggered arrangements. The simulations in this case were also two-dimensional,
and were conducted at Re = 200. Mittal, Kumar & Raghuvanshi (1997) used a finite-
element method stabilized by the streamwise upwind Petrov–Galerkin (SUPG) and
pressure stabilizing Petrov–Galerkin (PSPG) techniques. The flows examined were
at Re = 102 and Re = 103, and the two tandem arrangements included in their work
were for spacings P/D = 2.5 and P/D = 5.0. For the spacing P/D = 2.5, they observed
that while at Re= 102 there was no distinct vortex shedding behind the upstream
cylinder, for Re= 103 there was. They also noted a reduction in the Strouhal number
compared to the single cylinder case for the same Re. For the Re = 103 case, they
found that although the near wake was temporally periodic, the far wake was
not. Jester & Kallinderis (2003) used a second-order SUPG and dynamic meshing
to solve efficiently the two-dimensional flow on a large number of different two-
cylinder configurations. Reynolds numbers of 80 and 1000 were considered, and
good qualitative and quantitative comparisons with published experimental data were
claimed. They were able to reproduce the hysteresis effect first observed experimentally
in the work of Zdravkovich (1984). This hysteresis produces an overlap of the
reattachment and binary-vortex regimes for a range of spacings, although only one
flow regime exists at a time. In this range of spacings, there is reattachment if
the cylinder was displaced there from smaller spacings, while there is binary-vortex
shedding if it was displaced from larger spacings. In Papaioannou (2003) two cases of
hysteresis are demonstrated in the context of two-dimensional numerical simulations
starting from different initial conditions. When, for a given spacing and Reynolds
number, the flow field corresponding to the solution of lower Reynolds number
was used as initial condition, reattachment was preserved. On the other hand, when
the initial condition for that spacing was the corresponding flow field at a higher
Reynolds number for which the flow was in binary-vortex regime, the flow remained
in that regime. This was observed only for a few of the tested spacings, for those that
correspond to the regime-overlapping region of spacings.
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In the studies mentioned so far, the focus has been on how the spacing between
the two tandem cylinders influences the forces and the flow structure as seen by flow
visualization of the vorticity component parallel to the cylinders’ axes. Three-dimen-
sional effects have not been examined. There are several studies, however, on the three-
dimensionality of a single cylinder. Those studies have shown that the development
of a spanwise instability of the shed vortices is the onset of three-dimensionality
in the wake. An elaborate description of the development of three-dimensionalities
in the wake of a single cylinder and the different Reynolds number regimes, along
with extensive literature references on the topic, is provided by Williamson (1996).
The mutual effects between three-dimensionality and cylinder spacing have not been
examined in the past.

In the present work, we use direct numerical simulations to gain some insights
into those effects at the lower subcritical regime. Specifically, we investigate
how three-dimensional predictions of forces and Strouhal frequencies on tandem
cylinders deviate from two-dimensional predictions, and examine the reasons for such
discrepancies. We compare the primary vorticity flow-field predictions of two- and
three-dimensional simulations at corresponding Re. We also study how the presence
of a second cylinder and its distance from the first changes the three-dimensionality
of the wake. To achieve these objectives we employ both a two-dimensional numerical
scheme and a three-dimensional scheme with periodicity imposed in the direction of
the cylinders’ spans. Both schemes are based on the spectral/hp element method. A
series of numerical experiments were performed. For the two-dimensional simulations,
the spacing was systematically varied for Re = 160 and Re =500. The first Reynolds
number was chosen to be just below the onset of three-dimensionality for the single-
cylinder case. The second was chosen to be in a regime where three-dimensionality
is well developed for the single cylinder with relatively strong streamwise streaks
of vorticity (Williamson 1988). Additionally, to track the critical spacing variation
with Re, selected spacings around the expected critical spacing were examined at
Re = {100, 200, 250, 300, 350}. For the three-dimensional simulations, the spacing was
systematically varied for Reynolds numbers 500 and 1000, where it is known that for
a single cylinder the wake has developed considerable three-dimensionality.

This paper is organized as follows. In § 2, we provide a brief description of the
solution method, both in two- and three-dimensions. In § 3, we present the results
for the forces and shedding frequencies, explain their variation with cylinder spacing
(P/D), and compare between two- and three-dimensional results. In § 4, we study
the three-dimensional effects on the critical spacing and how the latter varies with
the Reynolds number. In § 5, we study the way cylinder spacing affects three-
dimensionality. Initially, this is done by flow visualization of cases corresponding to
the different flow regimes, and subsequently by employing different ways to quantify
three-dimensional effects and measure their variation with cylinder spacing. Finally,
we conclude with a brief summary. In the Appendix we demonstrate the convergence
of selected two- and three-dimensional simulations.

2. Method and formulation
We solve the incompressible Navier–Stokes equations with the following boundary

conditions: on the cylinder surface the no-slip condition is prescribed; the infinite
domain is truncated and represented by a rectangular domain; a Neumann boundary
condition is used at the outflow, imposing zero velocity gradient normal to that
boundary (streamwise direction); and the free-stream velocity is prescribed on all
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other sides. For the initial condition, we used the solution of the immediately lower
available Reynolds number for every given spacing. If that was not available, the free-
stream velocity was also used as the initial condition. The equations are normalized
by the cylinder’s diameter D, the free-stream velocity U∞, and the water density which
is assumed constant throughout the fluid. We will highlight next the basic elements of
the method used to solve the incompressible Navier–Stokes equations. Convergence
results for two- and three-dimensions can be found in § A.2.

2.1. Two dimensions

We followed a spectral/hp element approach based on hybrid unstructured meshing
(see Warburton 1998). The mesh is referred to as hybrid when it contains both
triangular and quadrilateral elements. In the context of spectral/hp elements,
increasing the resolution can be achieved by either decreasing the elements’ size
(h-refinement) or by increasing the order of the polynomials used for a given mesh
(p-refinement). The second way is much easier as it does not require remeshing.
Generalized tensor products of Jacobi polynomials of mixed weights are used for the
trial bases, as discussed in detail in Karniadakis & Sherwin (1999). Each element
can accommodate variable spectral order. This is accomplished by hierarchical
arrangement of the trial bases in terms of vertex, boundary and bubble modes,
and matching of the vertex and boundary modes, so that C0 continuity is ensured, as
required in the Galerkin formulation for incompressible flow. This approach makes
it possible to use the same mesh discretization to solve for the different Reynolds
numbers considered, just by changing the polynomial order p.

The equations of motion are discretized in time using the high-order fractional-step
scheme proposed by Karniadakis, Israeli & Orszag (1991). The first stage of each
time step adds the contributions of the nonlinear terms (ujui,j ) to the velocity field.
Those contributions are computed explicitly using a stiffly stable integration scheme
of order J :

u
n+1/3
i −

J−1∑
q =0

αqu
n−q

�t
=

J−1∑
q=0

βq[−ujui,j ]
n−q, (2.1)

where αq and βq are the coefficients for stiffly stable integration. We use second-order-
accurate time stepping (J =2).

The next stage adds the contribution of the pressure gradient to the velocity field:

u
n+2/3
i − u

n+1/3
i

�t
= −P,i. (2.2)

Continuity is enforced at this sub-step requiring u
n+2/3
i,i = 0. This leads to a Poisson

equation for the pressure:

P
n+2/3
,ii = �t−1u

n+1/3
i,i , (2.3)

solved along with a consistent Neumann boundary condition derived from the normal
component of the momentum equation:

p,ini = ni

[
Je−1∑
q=0

βq

(
N

(
u

n−q
i

)
+ Re−1L

(
u

n−q
i

))]
, (2.4)

where N (ui) = ujui,j represents the nonlinear terms of the Navier–Stokes and
L(ui) represents the linear Laplacian terms written in rotational form: L(ui) = ui,jj
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= −εijkεklmum,lj . In the final stage, the viscous correction is computed by solving a
Helmholtz equation, also enforcing the velocity boundary conditions:

γ0u
n+1
i − u

n+2/3
i

�t
=

un+1
i,jj

Re
, (2.5)

where γ0 =
∑J−1

q =0 αq is the backwards differentiation coefficient in the stiffly stable
scheme. The total force can be simply calculated by numerical integration of the
calculated pressure and viscous stress terms:

Fi(t) =

∮
[−p ni + Re−1(ui,j + uj,i)uj ], (2.6)

where ni is the normal vector.
This method has several advantages. One of them is the high accuracy due to

the convergence characteristics of the spectral/hp elements. Another advantage is
the efficiency achieved by the explicit treatment of the nonlinear terms and the fact
that the other two sub-steps are the well understood and efficiently solved Helmholtz
equations.

2.2. Three dimensions

To solve the problem in three dimensions, additional boundary conditions have to
be prescribed. Periodic boundary conditions were used at the spanwise truncation
of the mesh to avoid phenomena such as contamination by end-effects, known from
experimental studies to cause disturbances, especially when studying the spanwise
instability of the wake. For the present problem where the cylinders are rigid and
stationary, efficiency is improved by using a hybrid scheme using Fourier collocation in
the spanwise direction (z) and Jacobi–Galerkin formulation on planes perpendicular
to the cylinder (x,y). To reduce aliasing errors a 3/2 rule is employed. Details of this
scheme can be found in Henderson & Karniadakis (1995). To use Fourier expansions
in the z-direction, the assumption that all variables are periodic in this direction has
been made:

ui(x1, x2, x3; t) =

M−1∑
m=0

[ui]
m(x1, x2; t) exp(ικmx3), (2.7)

where κ is the x3-direction (or z-) wavenumber defined as κ = 2π/Lz. A similar
splitting scheme as in the two-dimensional formulation is used for the transformed
Navier–Stokes equations. The choice of the spanwise length Lz of the domain was
based on efficiency and accuracy considerations. On those grounds and from past
experience, a spanwise length of Lz =3π was considered sufficient for the numerical
experiments presented in this work.

This method has several advantages. First, the use of Fourier collocation in the
z-direction enables us to use the same two-dimensional meshes we used for the
two-dimensional simulations for corresponding spacings. Secondly, it scales almost
perfectly for parallel computations. Specifically, the assignment of different modes to
different processors reduces communications among the processors and increases the
efficiency and scalability for parallel computations. Fourier expansions are an optimal
base for periodic functions and the fast Fourier transform (FFT) is computationally
efficient.

3. Calculation of shedding frequencies and cylinder forces
3.1. Shedding-frequency variation with cylinder spacing

Before we start analysing the tandem cylinders, we provide a result that establishes
the validity of our calculations for a single cylinder. Figure 2 shows a comparison
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Figure 2. Comparison among different studies of the base pressure coefficient (−CPB) of a
single cylinder for different Reynolds numbers. �, Williamson & Roshko 1990; �, Norberg
(1994); �, present results, three dimensions; �, present results, two dimensions.
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Figure 3. Comparison of Strouhal frequency calculated in the present study with published
experimental results. –�–, current CFD results for Re = 103; �, experiments by Xu & Zhou
(2004) at Re = 1.3 × 103; �, experiments by Xu & Zhou (2004) at Re = 2.9 × 103; – – –,
experiments by Igarashi (1981) at Re = 2.2 × 104.

of the variations in base pressure suction with the Reynolds number, between our
numerical data (two- and three-dimensional) and published experimental studies. The
base pressure suction is sensitive to the near-wake topology and it serves as a good
measure for comparisons. The three-dimensional predictions are in agreement with
the experimental results by Norberg (1994), as well as those by Williamson & Roshko
(1990).

In figure 3 we compare our shedding frequency results based on the three-dimen-
sional calculation for Re = 103, with experimental data. There is relatively good agree-
ment with most of the experimental data displayed for a wide range of spacings.
However, the critical spacing predicted by Xu & Zhou (2004) is quite high, resulting
in a disparity at spacings P/D = 4–4.5. Figure 4(a) shows a comparison of the
shedding frequencies between two- and three-dimensions for Re =500. The frequencies
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Figure 4. Frequency response based on CL signal for each cylinder. (a) Comparison between
two- and three-dimensional for Re = 500. —�—, Tandem three-dimensional; - -�- -, Tandem
two-dimensional; ——, stand-alone cylinder three-dimensional; – – –, stand-alone cylinder
two-dimensional. (b) Re = 103, three-dimensional: CL frequency responses are identical for
upstream and downstream cylinder. —�—, Upstream cylinder; - -�- -, downstream cylinder;
——, stand-alone cylinder. (c) Re = 160, two-dimensional: CL frequency responses are identical
for upstream and downstream cylinder. —�—, Upstream cylinder; - -�- -, downstream
cylinder; ——, stand-alone cylinder.

presented in figure 4 are based on spectral analysis of the lift force time series for
each cylinder. The discrepancy is significant for a range of spacings between 2.5 and
4.0 diameters. As will be discussed in detail later, this is due to the under-prediction
of the critical spacing by the two-dimensional calculations. It is also found that the
frequency of the force response is identical on both the upstream and downstream
cylinder for each of the spacings examined both in two- and three-dimensions as
illustrated in figure 4(b, c).

Spectral analysis was performed on both components of the force. As expected
from single-cylinder results, the frequency response of the streamwise component of
the force (drag) was found at double the frequency of the vertical component (lift).
For very small spacings (proximity regime), the system sheds as a single body, at
a frequency close to that of a single cylinder, perhaps not surprisingly, since the
frequency is largely determined by the lateral distance of the emanating shear layers.
Subsequently, there is a sudden decrease in the shedding frequency as the flow passes
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Work Re P/D CD

1
CD

2
St Method

Ljungkrona et al. (1991) 100 3.0 1.11 −0.03 0.110 Control volume, SIMPLE
Present work 100 3.0 1.16 0.00 0.116 Spectral/hp, fractional step
Ljungkrona et al. (1991) 100 4.0 1.28 0.71 0.148 Control volume, SIMPLE
Present work 100 4.0 1.31 0.75 0.152 Spectral/hp, fractional step
Meneghini et al. (2001) 200 3.0 1.00 −0.08 0.125 Galerkin FEM, fractional step
Slaouti & Stansby (1992) 200 3.0 0.87 −0.16 0.128 Random vortex
Present work 200 3.0 1.02 −0.12 0.128 Spectral/hp, fractional step
Slaouti & Stansby (1992) 200 3.5 0.85 −0.18 0.12 Random vortex
Present work 200 3.5 1.27 0.40 0.174 Spectral/hp, fractional step
Jester & Kallinderis (2003) 103 3.0 1.42 0.16 NA FEM, SUPG stabilization
Present work 103 3.0 1.44 0.13 0.222 Spectral/hp, fractional step
Jester & Kallinderis (2003) 103 3.5 1.43 0.16 NA FEM, SUPG stabilization
Present work 103 3.5 1.45 0.12 0.224 Spectral/hp, fractional step

Table 1. Comparison of CD and St among various two-dimensional numerical studies for
corresponding Reynolds numbers and spacings. (NA denotes ‘not available’.)

from the proximity to the reattachment regime. This abrupt change could relate to the
bi-stable behaviour of the flow in the transition between these two regimes observed
by Xu & Zhou (2004). In the reattachment regime, the shedding is suppressed in
the gap region and occurs after the downstream cylinder. The oncoming velocity on
the second cylinder is reduced owing to shielding by the upstream cylinder, and in
general there is less vorticity generation in both cylinders. The shedding frequency
reaches a minimum just before the critical spacing. For spacings larger than the
critical value, the shedding frequency is increasing towards that of a single cylinder.
As the separation distance increases past the critical spacing and vortex shedding
from the upstream cylinder occurs in the gap region, the effect of the downstream
cylinder on the upstream one is drastically diminished, allowing it to shed as if it
were standing alone. The downstream cylinder, on the other hand, is synchronizing
its shedding with the oncoming vortices, forming a binary vortex wake. This results
in only one detectable frequency on the force time-history of the downstream cylinder
as well as on other time-histories of fixed points in the wake.

3.2. Force calculations

At this stage, it is useful to present some results that establish the validity of our
force calculations. Because experimental data on the forces are not available for
very low Reynolds numbers, we compare some of the two-dimensional results we
obtained with the corresponding cases in other published numerical studies. Table 1
includes a quantitative comparison of CD as well as shedding frequency. There is
good agreement between our results and corresponding results from Meneghini et al.
(2001), Jester & Kallinderis (2003), and Sharman et al. (2005). In figure 5, the three-
dimensional calculations of CD at Re = 103 are plotted, along with some experimental
data in the subcritical regime, yielding a satisfactory comparison. The difference in
Reynolds number among the cases compared justifies the small differences shown
in the figure and are consistent with physical intuition, i.e. the differences in CD are
larger for the downstream cylinder, and the higher Reynolds number yields a lower
CD for the upstream cylinder.

For the entire range of spacings examined, CD of each of the two cylinders remains
smaller than that of a single cylinder standing alone at the same Re flow. In fact,



396 G. V. Papaioannou, D. K. P. Yue, M. S. Triantafyllou and E. Karniadakis

1 2 3 4 5

–0.4

0

0.4

0.8

1.2

P/D

CD

Figure 5. Comparison of CD prediction with experimental data. �, current CFD results for
Re = 103; �, experiments by Tanida et al. (1973) at Re= 3.2 × 104; �, experiments by Tanida
et al. (1973) at Re = 3.4 × 103. Filled symbols correspond to the downstream cylinder while
open symbols correspond to the upstream one.

the downstream cylinder is experiencing negative drag. Furthermore, for spacings
smaller than the critical spacing, the mean of the total force on the tandem system
is less than that of the single-cylinder case. In the proximity regime, the drag on the
upstream cylinder is almost identical to that of a single cylinder at corresponding
Re. There are no abrupt changes in the CD during the transition from proximity
to reattachment regime, such as those observed on the shedding frequency that we
related to the bi-stable character of the flow discussed by Xu & Zhou (2004). In
the reattachment regime, CD of the upstream cylinder is decreasing with increasing
spacing. At the critical spacing there is a jump in the values of the forces. This jump
is more pronounced on the drag force of the downstream cylinder, which changes
sign and from negative it becomes positive. The forces on the upstream cylinder tend
to those of a single cylinder with increasing spacing after the critical value.

The variation of the drag coefficient with spacing for a given Re was found to
follow the variations of the difference between the base pressure (CPB) and the front
stagnation-point pressure (CPG) coefficients. It should be clarified that those points
are defined by their ‘nominal’ position on each cylinder. Thus, for each cylinder,
front stagnation and base points are defined as the upstream and downstream anti-
diametric points parallel to the free stream. For each cylinder and each Reynolds
number examined we formed a linear transformation:

CDi = α(CPGi − CPBi) + β. (3.1)

The coefficients α and β were found by solving a least-squares problem of all available
spacings, separately for each body and each Reynolds number. This procedure gave
a good fit of the drag coefficients for both two-dimensional and three-dimensional
results (as seen in figure 6). Such transformation was found to perform well both in
two and three dimensions. The observation may have limited practical value because
α and β are different for each Re and each cylinder. However, its importance seems
to lie in the fact that the variation of the forces with spacing can be captured by
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Figure 6. Comparison of CD with linear mapping α(CPG − CPB ) + β . ——, CD for tandem
system; �, linear mapping for tandem system; – · –, CD for single stand-alone (S-A) cy
linder; - - - -, linear mapping for S-A cylinder; (a) two-dimensional: Re= 160 upstream
cylinder and S-A cylinder; (α, β) = (0.77, −0.16). (b) two-dimensional: Re= 160 down-
stream cylinder; (α, β) = (1.01, 0.10). (c) three-dimensional: Re= 103 upstream cylinder and S-A
cylinder; (α, β) = (0.67, −0.23). (d) three-dimensional: Re= 103 downstream cylinder; (α, β) =
(0.80, 0.00).

the variation of the pressures on those two points. For instance, the decrease of
the CD with increasing spacing in the reattachment regime can be attributed to a
decrease in the base pressure suction (−CPB) owing to a shift in the locus of the
recirculation region immediately after the upstream cylinder. Notice also that with
the same coefficients, the transformation fits the forces well for the reattachment as
well as the binary-vortex regime. The success of the same transformation in both
regimes can be attributed to the sensitivity of CPB in the near wake vortex formation
behind each cylinder and the ability of CPG to account for the shielding effect on the
downstream cylinder.

3.3. Deviations between two- and three-dimensional forces and shedding
frequency calculations

As seen in §§ 3.1 and 3.2, near the spacing where transition occurs from reattachment
to binary vortex-shedding regime, there are abrupt changes in the forces as well as
the shedding frequency. For Re= 500 we can directly compare the two-dimensional
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with the three-dimensional results (see figure 7). The results agree quite well for
small spacings, i.e. in the proximity and early reattachment regimes. The first minor
differences appear on the forces of the downstream cylinder at P/D =2.0, but the
comparison is still quite good. Somewhere between P/D = 2.2 and P/D = 2.5 the two-
dimensional predicts transition to binary vortex regime and the forces and frequency
increase abruptly. For a relatively wide range of spacings extending from P/D = 2.2
to P/D = 3.5 the results are completely different quantitatively and qualitatively as
well, because the flow is classified differently by the two- and three-dimensional
calculations.

After the spacing P/D =3.8, the vortex formation and shedding in the gap region
occurred in three-dimensional case as well, and the two- and three-dimensional pre-
dictions resume qualitative agreement. However, quantitatively the two-dimensional
code over-predicts the CD of the upstream cylinder and under-predicts that of the
downstream, while over-predicting the shedding frequency. This is because the two-
dimensional simulation allows for a higher strength of vortices shed by the upstream
cylinder, thus creating a stronger low pressure between the two cylinders. Figure 7
also shows that the CD of a section of the three-dimensional cylinder is quite different
from the corresponding two-dimensional cylinder. This indicates that the main reason
for the discrepancies between the two- and three-dimensional forces at this Re is
the weakening of the strength of the primary shedding in favour of the crossflow
component of the vorticity, and not poor spanwise correlation and cancellation due
to phase difference.

4. Three-dimensional effect on the critical spacing
As we have already discussed, it is evident that the transition from the reattachment

to binary-vortex regime is the cause of abrupt changes to the forces on the cylinders
and the general characteristics of the flow. It can also be seen that there is a different
prediction of the critical spacing ((P/D)|CR) for the Re = 500 case by the two- and
three-dimensional simulations. In figure 8, we show the variation of the critical spacing
with Reynolds number, as predicted by two- and three-dimensional simulations. The
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simulations. �, three-dimensional reattachment; �, two-dimensional reattachment; �,
three-dimensional binary vortex; �, two-dimensional binary vortex; ——, middle distance
between P/D of last reattachment and first binary vortex case of two-dimensional simulations
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case of three-dimensional simulations for given Re; - -�- -, variation of the recirculation region
length for a stand alone (S-A) cylinder with Re (two-dimensional prediction).

same plot also serves as a schematic map of all the cases examined and the regimes
to which they were found to belong. The location of the critical spacing for a given
Reynolds number is obtained approximately between the last reattachment and first
binary-vortex wake case. Because the P/D resolution did not allow a very accurate
estimation, the shaded regions of figure 8 represent the range within which the critical
spacing lies for each Reynolds number.

We have also plotted the variation of the length of the mean recirculation region
behind a single cylinder (L0

F ) as predicted by our two-dimensional calculations. In the
present work this was found by calculating the time average field over at least twelve
shedding periods after steady states have been achieved, and finding the location of the
streamline saddle points. An equivalent result is obtained by finding the intersection of
the the x-axis with the zero contour or the maximum root mean square (r.m.s.) of the
horizontal velocity. Transferring to logarithmic axes and measuring the slope, we find
that in our two-dimensional prediction L0

F ∝ Re−1/2. A similar procedure is applied
for the base suction coefficient of a single cylinder obtained by the two-dimensional
simulations and shown in figure 2. It was found that −CPB ∝ Re1/2. This verifies the
discovery made by Bearman (1965) that the base suction is very closely inversely
proportional to the formation length. It is known that the monotonic decrease of
L0

F (or equivalently, the monotonic increase of −CPB) with Re ceases with the onset
of three-dimensionality in the wake. Gerrard (1966) showed that in the turbulent
regime, L0

F initially grows with Re and reaches a maximum between Re ≈ 2 × 103 and
5 × 103, depending on the aspect ratio of the cylinder, but it then decreases for further
increasing Re. Norberg (1998) found the local maximum of L0

F near Re = 1.6 × 103.
We assume that the inverse proportionality relation between LF and −CPB is still
valid after the onset of three-dimensionality. Figure 8 shows that the critical spacing
is one to two diameters larger than the LF of a single cylinder at the corresponding
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Reynolds number. This suggests that the presence of the downstream cylinder in
relative proximity is stabilizing the near-wake region of the upstream.

It can also be inferred from figure 8 that for Re where three-dimensionalities are
significant, the two-dimensional simulations under-predict the critical spacing. To
explain this we return to the −CPB variation with Reynolds number for a single
cylinder. As seen in figure 2, contrary to the two-dimensional prediction, the base
pressure suction calculated by the three-dimensional simulation results is reducing
very slowly as Re increases from 500 to 1000. Invoking the inverse proportionality
assumption between LF and −CPB , as well as the data of Gerrard (1966) and Norberg
(1998), we expect L0

F to be increasing in the Re range 500 − 1000. Even though a
precise relationship between the formation length of a single cylinder and the critical
spacing of two tandem cylinders has not been found to exist, their qualitative variation
with Re appears consistent in both the two- and three-dimensional simulation results.

5. Stabilizing effect of the downstream cylinder in relative proximity to the
upstream

5.1. Vorticity fields

In figures 9 to 12, instantaneous vorticity fields are plotted for visualization and
examination of the flow structure. All displayed cases correspond to Re = 500. The case
P/D =1.1 (figure 9) corresponds to the proximity regime and demonstrates relatively
strong spanwise correlation and similarity to the corresponding two-dimensional
case. The spacing P/D = 2.0 (figure 10) was chosen to compare the two- and three-
dimensional results for a reattachment case. Spacing P/D = 5.0 (figure 12) illustrates
a binary vortex regime case while P/D = 3.5 (figure 11) corresponds to a case where
the two- and three-dimensional give predictions in different regimes. Comparison
of the three-dimensional results for P/D = 2.0 and P/D = 3.5 cases shows different
locations of the reattaching sheets on the downstream cylinder. This is in accordance
to the sub-categorization of the reattachment regime to ‘alternating’ and ‘quasi-steady’
by Zdravkovich (1977). For a complete set of flow visualizations for all examined
cases (see figure 8), see Papaioannou (2003).

On the left-hand sides of figures 9 to 12, the z-component of the vorticity at
four spanwise sections of the cylinder ((a)(i)–(a)(iv)) is compared with the two-
dimensional vorticity field corresponding to the same case ((a)(v)). This plot also
gives an illustration of the three-dimensionality by noting the difference in the
instantaneous vorticity among different spanwise locations. In cases of relatively high
three-dimensionality, the phase of primary vortex shedding varies among different
spanwise sections, and vorticity components non-parallel to the cylinder’s axis become
significant. The spanwise location of the (x, y)-planes is shown by the horizontal lines
in parts (b)(i) of figures 9–12. The instantaneous vorticity vector magnitude of the
tandem system is plotted at a plane section y = 0. In a two-dimensional flow, the
vorticity should appear in straight bands parallel to the z-axis. With developing three-
dimensionality, those bands lose their uniformity. Originally they become wavy and
subsequently they are disrupted from vortex dislocations. Below, the corresponding
view for a single cylinder is plotted for comparison of the three-dimensionality between
the tandem system at the different regimes and the single cylinder at corresponding
Re. Figure 10 shows that the spanwise deviations of the vorticity magnitude in
the tandem P/D = 2.0 case are less than in the single-cylinder case. Both two- and
three-dimensional predictions are in the reattachment regime for this spacing. There
is obvious spanwise periodic structure evident in the (x, y) plot with prominent
components in the second and fourth modes.
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Figure 9. Proximity regime case corresponding to spacing P/D = 1.1 and Re = 500.
((a)(i)–(a)(iv)) show the z-component of the instantaneous vorticity field, on four different
(x, y)-planes across the span of the cylinder. Those planes correspond to the horizontal lines
of (b)(i) which shows the magnitude of the instantaneous vorticity vector at the (x, z)-plane
at y = 0. The two-dimensiional vorticity field is plotted in (a)(v) for comparison with the
z-vorticity slices. The vorticity magnitude in the y = 0 plane of a single cylinder is plotted in
(b)(ii) for comparison with the corresponding view for the tandem system.
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Figure 10. Reattachment regime case corresponding to spacing P/D = 2.0 and Re = 500. The
vorticity fields are instantaneous and the figure is outlined similarly to figure 9.

There is an indication that the presence of the downstream cylinder is stabilizing
the wake in the gap region. The single-cylinder case exhibits more significant three-
dimensionality at a distance from the cylinder corresponding to the extent of the gap
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Figure 11. Instantaneous vorticity for spacing P/D =3.5 and Re =500. The three-dimen-
sional simulations predict reattachment for this case, while the two-dimensional result, (d)(v),
predicts vortex shedding in the gap region classifying this case in the co-shedding or binary-
vortex regime.
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Figure 12. Binary-vortex or co-shedding regime case corresponding to spacing P/D =5.0 and
Re =500. Both two- and three-dimensional simulations classify this case in the same regime.

region. This is a consequence of the stabilizing effect it has on the primary vorticity in
the gap region where the crossflow vorticity draws energy. Streamwise and spanwise
components of the vorticity gain in strength as vorticity is convected downstream
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at the expense of spanwise (primary shedding) vorticity. The prevention of vortex
roll-up and the formation of a strong vortex core in the gap region suppresses
three-dimensionality as well, because at the Re range considered, the development of
three-dimensionality comes from an original undulation of primary vorticity and the
formation of vortex dislocations on the core of primary vortices. In the reattachment
regime, the three-dimensionality in the gap region generally increases with cylinder
spacing. For increasing spacing within the reattachment regime, the shear layer that
reattached on the front side of the downstream cylinder is drawn into the gap from
at least one of the two sides. The case P/D = 3.5 (figure 11) shows considerable
primary vorticity in the gap region, but it is distinctly different from cases belonging
to the binary vortex regime. Apart from the difference in the measured forces on the
downstream cylinder, there is a qualitative difference in that the spanwise vorticity
in the gap region is drawn from the reattachment site on the downstream cylinder
rather than an immediate roll-up of the shear layer emanating from the upstream. This
qualitative difference is illustrated in figure 11 by comparison of the three-dimensional
sections that indicate reattachment with the two-dimensional result for the same
spacing that predicts vortex shedding in the gap region. Past the reattachment regime
(P/D > 3.5) where vortex shedding occurs in the gap region, the three-dimensionality
increases between the cylinders as well as the entire wake, as illustrated in figure 12.
The flow in the binary vortex regime exhibits more three-dimensionality than the
single-cylinder case.

5.2. Quantification by enstrophy calculation

The enstrophy is defined as the variance of the vorticity, i.e.

D(t) =

∫
Ω

ω2
i (xi, t) dV =

∫
Ω

(εijkuk,j )
2 dV, (5.1)

where tensor notation is employed for compactness in (5.1). The vorticity vector is
denoted as ωi , and the velocity as ui . The idea is to use the enstrophy integral to
quantify the vorticity fields presented and to make the comparisons among different
cylinder spacings more meaningful. The mesh handling and merging technology we
developed allowed the use of the same outer mesh for all examined spacings, ensuring
that the limits of integration of the enstrophy integral are consistent among all
examined cases.

At every time step, the whole field is solved for the primitive variables (ui, p).
The enstrophy is calculated directly by numerical differentiation of the calculated
velocity, subsequent calculation of the vorticity field, and squaring and integrating.
In the three-dimensional calculations, the vorticity is a three component vector. As
an alternative way of quantifying three-dimensionality, the secondary enstrophy is
calculated; it is defined as the total enstrophy based on the streamwise (x) and lateral
(y) components of the vorticity, i.e.

DV (t) =

∫
Ω

(
ω2

x(xi, t) + ω2
y(xi, t)

)
dV. (5.2)

This gives the total enstrophy based on components of the vorticity not present in a
two-dimensional calculation. Measurement of the total enstrophy and primary compo-
nent of the enstrophy (Dz), and comparison with the corresponding two-dimensional
enstrophy calculation can enhance the understanding of how the two- and three-
dimensional results differ. Figure 13 shows that for a given Reynolds number, the
total enstrophy for spacings lower than the critical is smaller than that of a single
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cylinder. The same is true also for the secondary and primary enstrophy components.
This result is also in support of the wake stabilization scenario suggested earlier.

In the two-dimensional simulations, the secondary enstrophy does not exist. The
question that arises is how the primary and total enstrophy predicted by the three-
dimensional simulation compare with those of two-dimensions for a particular spacing
and Reynolds number. In figure 14, the question is answered for spacings P/D = 3.5
and P/D = 4.0. For P/D = 4.0, which is past the critical spacing for both the two- and
three-dimensional predictions, the total enstrophy of the three-dimensional simulation
is higher than that of the two-dimensional simulation. The opposite is true for the
primary enstrophy, where it is clearly over-predicted by two-dimensions. In the case
P/D =3.5, the enstrophy calculated by the two-dimensional simulations is also greater
than the total enstrophy of the corresponding three-dimensional result. We should
point out, however, that this spacing is classified in the reattachment regime by the
three-dimensional result while for the two-dimensional it is already in the binary
vortex-shedding regime. As discussed earlier and supported also by figure 13, the
enstrophy is increasing significantly with inception of vortex shedding in the gap
region.

5.3. Spanwise variations

The study of three-dimensionalities proceeds with the analysis of the spanwise and
time variations of forces, or the pressure and velocity signals. To make the presentation
more clear, we make the following conventions: Spanwise averaging is denoted as 〈〉:

〈g(z, t)〉 =

M∑
i=1

g(zi, t)

M
, (5.3)
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where M is the number of recording points along the span. An overbar represents
time averaging:

g(z, t) =

N∑
k=1

g(z, tk)

N
, (5.4)

where N is the number of discrete time samples of the signal. Spanwise fluctuations
are represented with a prime (′):

g′(z, t) = g(z, t) − 〈g(z, t)〉. (5.5)

Finally, for fluctuations in time we define:

ǧ(z, t) = g(z, t) − g(z, t). (5.6)

For the scope of the present paper and the way we have treated three-dimensionality
so far, the intensity of the secondary instability is more relevant in quantifying three-
dimensionality than the length scale of the spanwise fluctuations reflected in the
correlation length. From here on, the ‘hat’ operation will denote Fourier transform to
simplify notation.

The method used here involves calculating the energy of the spectrum of the
spanwise fluctuations. Starting with the covariance between two stations zi and zj :

R̃(zi, zj ) = f̌ ′(zi, t)f̌ ′(zj , t) (5.7)

the covariance function can be computed for each zi simply by setting zj = zi + ζ :

R̃(zi, zj ) = R(zi, zi + ζ ) ≡ R(zi, ζ ). (5.8)

The last step can be implemented as a simple rearrangement of the elements of
R̃, taking into account the periodicity imposed in the z-direction. Once R(zi, ζ ) is
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Figure 15. Effect of spacing on I3 based on fluctuations of the drag and lift forces on each
cylinder, and comparison with the single cylinder for (a) Re= 500, (b) 1000. —�—, upstream
cylinder; - -�- -, downstream cylinder; ——, single cylinder.

available, a Fourier transform in ζ (not z) is performed. This will be denoted by
a double hat to emphasize that the transform is with respect to ζ . Squares of the
absolute values of the coefficients form a spectrum for every different zi . Then, an
averaging in the spanwise direction and a summation yield the norm:

I =
∑

|〈22R(zi, ζ )〉|2. (5.9)

The method smooths (averages) in time first and along the span last, and relates
to measuring the r.m.s. of the spanwise fluctuations (through Parseval’s theorem).

The results are presented in figure 15. The plot is organized in columns of constant
Reynolds number and rows corresponding to the time-histories used for the analysis
(drag or lift). Each subplot contains results for both upstream and downstream
cylinders as well as the single cylinder for comparison. The figure shows that the three-
dimensionality in the force distribution along the span is higher on the downstream
cylinder than the upstream. A sudden increase in I as the spacing increases past
the critical spacing can also be identified. The figure also shows that the energy of
the spanwise fluctuations of the upstream cylinder is lower than that of the single
cylinder throughout the reattachment regime. This supports the stabilization scenario
proposed in this section. Another observation is that for the higher spacing examined
(P/D = 5.0), the value coincides exactly with that corresponding to the single cylinder,
showing that when the downstream cylinder is sufficiently downstream and well into
the binary vortex regime the upstream cylinder behaves much like the single cylinder.

6. Summary
In the present work, two- and three-dimensional direct numerical simulations based

on the spectral/hp element method have been performed to study the flow around
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two stationary tandem cylinders in the laminar and early turbulent regimes. Good
agreement was obtained with published experimental and two-dimensional numerical
data. It was found that the two-dimensional results deviate increasingly from three-
dimensional results with increasing Re, beyond a critical value for which there is onset
of wake three-dimensionalities. In the two-dimensional simulations, reattachment
ceases for much smaller P/D values than in three-dimensional simulations. This
causes large discrepancies in the forces and shedding frequencies for the range of
spacings extending between the two- and three-dimensional predictions of the critical
spacing. Systematic analysis showed that the differences in the prediction of the critical
spacing between the two- and three-dimensional simulations for a given Reynolds
number are related to the differences in the prediction of the formation length, or
equivalently, the base pressure coefficient of a single cylinder.

Flow visualization showed an increase on the wake three-dimensionality as the cylin-
der spacing increased from values in the reattachment regime to values corresponding
to the binary-vortex regime. A wake stabilization scenario was proposed suggesting
that the presence of the downstream cylinder in spacing less than the critical value
has a stabilizing effect on the wake. To support this scenario, we employed enstrophy
integrals decomposed into a primary component associated with the primary vortex
shedding and a secondary component involving vorticity components related to three-
dimensional effects. Throughout the reattachment regime, all enstrophy components
are below the corresponding ones for the single cylinder case. The situation is reversed
for spacings in the binary-vortex regime.

The strength of three-dimensionalities was alternatively quantified using the span-
wise fluctuations of the forces on each cylinder in the tandem system. The results
obtained are in agreement with the previous conclusions, and further verify the wake
stabilization scenario. At the same time, they indicate increased intensity of three-
dimensional fluctuations on the downstream cylinder compared to the upstream
cylinder.

This work was supported by the Office of Naval Research. Computations were per-
formed at the Naval Oceanographic Office (NAVOCEANO) Major Shared Resource
Center (MSRC) and at NCSA University of Illinois at Urbana-Champaign.

Appendix. Convergence
A.1. Convergence of two-dimensional results

The mean drag coefficients of the upstream and downstream cylinders were used
to study convergence along with the time average of the total enstrophy. See
Papaioannou (2003) for extensive convergence tests by p-refinement, and several
cases of comparisons between different meshes for a given spacing and Reynolds
number.

Here the case of P/D =4.0 and Re =500 is selected for demonstration of conver-
gence. Figure 16 shows convergence of the drag coefficients and the time average
of the total enstrophy for this case. This case was chosen because it is towards the
high end of the Reynolds numbers considered by the two-dimensional simulations.
Furthermore, it is in the binary vortex regime where the vorticity is increased and
there are steep gradients that have to be resolved. Prediction of the forces on the
downstream cylinder, in particular, requires good resolution of the flow in the gap
region. Figure 16 shows increased sensitivity of the drag coefficient for the downstream
cylinder (CD2). This is better demonstrated by the relative error. For the calculation
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Figure 16. Demonstration of convergence for two-dimensional case {P/D = 4.0,Re= 500}.
The drag coefficient of the upstream cylinder (CD1) converges faster than that of the
downstream cylinder (CD2). Relative errors of CD1, CD2 and total enstrophy are calculated
based on the value of the corresponding quantity for the highest available polynomial order.

of the relative error, the result of the highest available polynomial order was used as
reference:

ε(p) =

∣∣∣∣CDi(p) − CDi(pmax)

CDi(pmax)

∣∣∣∣, (A 1)

where p denotes the polynomial order and pmax the maximum available p for the
case presented, in this case pmax = 12. The relative error of the mean total enstrophy is
defined similarly. The enstrophy integral is an appropriate norm to study convergence
even in the mathematical sense. The enstrophy seems to converge slower than the drag
coefficients. This can be explained in terms of the unstructured mesh used and shown
in figure 17. The elements in the far wake are considerably larger in size than those
in the near wake. The cylinder forces are not much influenced by under-resolution
in the far wake. The enstrophy integral, however, captures them because it directly
integrates over the whole domain. It should be noted that small fluctuations can also
be attributed in the statistical error in calculating means of the forces and enstrophy.
The highest polynomial order available in each case of spacing and Reynolds number
was used for all the results presented in the text.

A.2. Convergence of three-dimensional results

The use of Fourier collocation in the spanwise direction alleviates the need for a
fully three-dimensional mesh. Thus, the same meshes were used for the two- and
three-dimensional simulations. Having ensured enough resolution in the transverse
planes from the two-dimensional runs, the spanwise resolution had to be determined.
In table 2, we compare the drag forces and shedding frequency between 32 and
64 planes in the spanwise direction. The columns of the compared quantities CD1,
CD2 and St are subdivided into two subcolumns one for each Re considered (500
and 1000). For each Re, there are two subcolumns corresponding to the spanwise
resolutions 32 and 64. The rows of the table correspond to different cylinder spacing
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Figure 17. Computational mesh for case P/D = 4.0. The final mesh is an assembly of mesh
blocks. The mesh blocks add flexibility in the mesh generation process and lead to consistency
among meshes corresponding to different spacings. For example, by reusing the outer mesh
and changing only the mesh block [−2.5, 7.5]D × [−4.0, 4.0]D. The O type mesh extending
radially from 0.5D to 1.0D around each cylinder is also reusable.

CD1 CD2 St

Re 500 1000 500 1000 500 1000

Nz 32 64 32 64 32 64 32 64 32 64 32 64
P/D

S-A 1.196 1.154 NA 1.030 NA NA NA NA 0.204 0.206 NA 0.216
1.1 1.088 NA 1.048 1.038 −0.250 NA −0.308 −0.316 0.224 NA 0.244 0.252
1.5 1.016 1.016 1.002 1.004 −0.294 −0.294 −0.290 −0.310 0.154 0.154 0.162 0.168
2.0 1.016 1.016 0.986 0.988 −0.182 −0.180 −0.196 −0.174 0.156 0.154 0.168 0.172
2.5 0.958 NA 0.956 0.928 −0.142 NA −0.096 −0.164 0.150 NA 0.154 0.158
3.5 0.882 0.894 NA 0.856 −0.144 −0.126 NA −0.158 0.144 0.144 NA 0.156
5.0 1.078 1.082 0.946 0.956 0.584 0.552 0.604 0.582 0.190 0.192 0.204 0.190

Table 2. Comparison of drag forces on upstream and downstream cylinders, as well as
shedding frequencies for spanwise resolutions Nz = 32 and Nz = 64. For each quantity, CD1,
CD2 and St , the two examined Reynolds numbers are shown; and for each Re, the two available
resolutions and the results they yield for different spacings (P/D) and the single-cylinder case
are given.

P/D, and one to the single, cylinder case (S-A). Convergence is demonstrated when
two consecutive numbers corresponding to the same P/D and Re, but different NZ ,
have small relative error. For illustration, consider the case P/D =5.0 for Re = 500.
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The relative error in the calculation of the upstream cylinder drag coefficient CD1 is
|1.082 − 1.078|/1.082 = 0.37 %. For the same case and the downstream cylinder drag
coefficient CD2, the relative error is |0.552 − 0.584|/0.552 = 5.8 %. To find the relative
error, we divide by the higher-resolution case (Nz = 64) result, because it is expected
to be closer to the actual value.

For the drag coefficient of the upstream cylinder CD1 at Re = 500, the relative error
from 32 to 64 z-planes is less than 1.5 % with several cases in the reattachment regime
giving a four significant digits agreement. At Re =103, the relative error reaches 3 %
in one case and is below 1.2 % for the rest available with two cases having agreement
within 0.2 %.

As we would expect, the drag coefficient of the downstream cylinder CD2 is more
sensitive to the spanwise resolution owing to the three-dimensionality that has deve-
loped in the gap region. The discrepancies between the results of 32 planes and 64
planes are relatively small (≈ 2–3 %) in the early reattachment regime, but reach
about 13–14 % as the spacing increases towards the critical spacing. For the binary
vortex regime case provided in table 2 (P/D = 5.0) the agreement is within 6 % error.

The maximum available resolution result of each case was used for all further
analysis.
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